Multiple Closed-Form Local Metric Learning for K-Nearest Neighbor Classifier

نویسنده

  • Jianbo Ye
چکیده

Many researches have been devoted to learn a Mahalanobis distance metric, which can effectively improve the performance of kNN classification. Most approaches are iterative and computational expensive and linear rigidity still critically limits metric learning algorithm to perform better. We proposed a computational economical framework to learn multiple metrics in closed-form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Distance Metric Learning for Nearest Neighbor Algorithm

Distance metric learning is a successful way to enhance the performance of the nearest neighbor classifier. In most cases, however, the distribution of data does not obey a regular form and may change in different parts of the feature space. Regarding that, this paper proposes a novel local distance metric learning method, namely Local Mahalanobis Distance Learning (LMDL), in order to enhance t...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

Adaptive Nearest Neighbor Classifier Based on Supervised Ellipsoid Clustering

Nearest neighbor classifier is a widely-used effective method for multi-class problems. However, it suffers from the problem of the curse of dimensionality in high dimensional space. To solve this problem, many adaptive nearest neighbor classifiers were proposed. In this paper, a locally adaptive nearest neighbor classification method based on supervised learning style which works well for the ...

متن کامل

BoostML: An Adaptive Metric Learning for Nearest Neighbor Classification

The nearest neighbor classification/regression technique, besides its simplicity, is one of the most widely applied and well studied techniques for pattern recognition in machine learning. A nearest neighbor classifier assumes class conditional probabilities to be locally smooth. This assumption is often invalid in high dimensions and significant bias can be introduced when using the nearest ne...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.3157  شماره 

صفحات  -

تاریخ انتشار 2013